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Abstract—Many AI algorithms have been deployed on edge
devices as edge computing has the advantages of reducing
latency, saving network bandwidth, and protecting data privacy.
Whether edge devices can run AI algorithms is an important
challenge due to the low-power and low-cost characteristics of
edge devices. Therefore, this paper analyzed the performance of
optimization techniques by running YOLOv3 on a typical GPU-
based low-cost edge device, NVIDIA Jetson Nano. YOLOv3 is a
representative object detection algorithm, which is widely used as
the benchmark in AI scenarios. We compared latency, memory,
and power consumption of three deep learning frameworks,
TensorFlow, PyTorch, and TensorRT. Then we squeezed the
extreme performance using multiple optimization techniques,
including model quantization, model parallelization, and image
scaling on TensorRT. The running speed of YOLOv3 increases
from 3.9FPS to 13.1FPS on NVIDIA Jetson Nano. It proves that
the resource-limited edge device can run AI applications with high
computing power requirements in a real-time manner. Moreover,
we summarized nine observations and five insights to guide the
selection and design of optimization techniques and verified the
generalization of these rules on NVIDIA Jetson Xavier NX. We
also provided a series of suggestions to help developers choose
the appropriate method to deploy AI algorithms on edge devices.

Keywords-Edge computing, Edge intelligence, YOLOv3,
NVIDIA Jetson Nano, NVIDIA Jetson NX, Quantification

I. INTRODUCTION

Edge computing calls for processing the data at the edge
of the network, which has the potential to reduce latency
and bandwidth charges, address the limitation of computing
capability of a cloud data center, increase availability as well
as protect data privacy and security [12]. Benefit from the
above advantages, edge computing has developed rapidly. The
combination of edge computing and artificial intelligence has
promoted the landing of more application scenarios, including
video analytics, smart home, autonomous driving, and so
on [13]. These edge intelligence scenarios usually have the
low-power and low-cost requirements for the edge devices,
for example, inexpensive robots [4], unmanned aerial vehicles
(UAVs) [5], and Internet-of-things (IoT) devices [11]. In order

This work was supported in part by the National Natural Science
Foundation of China under Grant 61762089, Grant 61863036, and Grant
71972165, and Yunnan Province Science Foundation for Youths under Grant
No.202005AC160007, No.202001BB050034.

NVIDIA
Jetson Nano

NVIDIA
Jetson Xavier

NX

Quantization techniques

Model Parallelization

Different image resolution

YOLOv3 performance:
latency, memory, power consumption

Bottleneck analysis
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to reduce the cost and power consumption of edge devices
without affecting the real-time requirements of edge intelli-
gent tasks, many techniques have been proposed, including
designing lightweight deep learning frameworks, compressing
the computational requirements of the AI models, resizing and
scaling the image, and so on.

However, while many research efforts have been devoted
to edge intelligence, several open challenges remain when
developing and deploying AI applications on edge in real
practice:

• Effectiveness. The edge AI-oriented optimization inno-
vations are being introduced at such a rapid pace that
researchers are hard-pressed to know their effectiveness
when running on specific edge devices, which caused a
lot of trial-and-error costs.

• Performance limitation. With the reduction of power
consumption and cost, the performance of edge devices
also decreases, which affects their ability to perform AI
tasks. It is difficult for the community to know whether
the edge device could meet the real-time requirements.

• Selection diversity. The optimization for edge intelligence
has multiple dimensions, including lightweight frame-
works, model compression, etc. It is difficult for develop-
ers to make a suitable hardware and software selection.

In order to address these challenges and analyze the fea-



sibility of the optimization techniques, this paper designed a
series of experiments to explore the effectiveness of the edge
AI-oriented techniques, squeeze the extreme performance of an
edge device, and provide selection suggestions when deploying
edge AI applications. This paper chooses YOLOv3 [10], an
object detection algorithm, as the edge AI tasks. YOLOv3 is
a representative object detection algorithm, which is widely
used as the benchmark in AI scenarios. NVIDIA Jetson Nano,
an embedded CPU-GPU heterogeneous architecture [6] de-
velopment device of high cost–performance ratio, is chosen
as the target edge device in this paper. The price of Jetson
Nano is $99, the power is 5W-10W, and it will provide the
peak computing power of 472GFLOPs. If YOLOv3 can be
run on Jetson Nano in a real-time manner, we can conclude
that object detection tasks can be deployed at the edge at a
meager cost. Therefore, this paper mainly explores whether
running YOLOv3 on Jetson Nano can meet real-time
requirements. If not, what is the fastest speed, and which
is the best deployment method? In addition, we hope that the
experience and characteristics obtained from Jetson Nano can
transfer to other GPU-based edge devices.

The overall design of the experiment is shown in Figure
1. We analyze three factors that affect the performance of
YOLOv3 on Jetson Nano: frameworks, quantization tech-
niques, and image resolution. The performance indicators in-
clude latency, memory usage, and power consumption. Firstly,
we compare the performance of three deep learning frame-
works, TensorFlow, PyTorch, and TensorRT and found that
the latency of PyTorch is much faster than TensorFlow and
TensorRT except the post-processing. Therefore, more detailed
experiments are used to analyze the performance bottleneck
of post-processing for PyTorch. The best overall performance
is the TensorRT framework, which has significant advantages
in end-to-end speed and memory usage. Consequently, we
leverage three optimized methods on TensorRT: 16-bit quanti-
zation, adjusting the resolution, and model parallelization. To
validate the generalization of these observations, we analyze
the performance on another GPU-based edge, NVIDIA Jetson
Xavier NX. The experimental results show that most of the
rules on Jetson Nano are also suitable for Jetson Xavier NX.
After utilizing the optimization techniques, the running speed
of YOLOv3 increases from 3.9FPS to 13.1FPS on NVIDIA
Jetson Nano and increases from 12.6FPS to 30.3FPS on
NVIDIA Jetson Xavier NX, which is sufficient for most edge
intelligence task.

The contributions in this paper are as follows:

• We obtained the extreme performance of low-cost edge
devices running AI tasks by utilizing various optimization
technologies, including model quantization, model paral-
lelization, and image scaling. The maximum speed can
reach 13.1FPS on Jetson Nano, which proves that the edge
device has the ability to meet the real-time requirements
of AI applications.

• We verified the feasibility of edge AI techniques and
obtain five insights by comparing and analyzing the

performance of deep learning frameworks on NVIDIA
Jetson Nano and Jetson Xavier NX. They pointed out
the performance bottlenecks and the further optimization
directions.

• We provided suggestions when developing and deploying
AI tasks on edge, which help developers to choose the
suitable configurations.

The rest of the paper is organized as follows. In Section
II, we introduced the related work of this paper and the
background of edge intelligence. In Section III, we explained
the four experimental methods. The observations, insights, and
suggestions from the experiment are reported in Section IV and
Section V. We summarized the paper in Section VI.

II. RELATED WORK AND BACKGROUND

A. Edge Intelligence

Edge intelligence calls for the capability to enable edges to
execute artificial intelligence algorithms. The edge intelligence
capability includes the accuracy of AI models, the latency,
memory footprint, and energy of running the models on the
edge [15]. Edge intelligence has already been widely used in
many scenarios, such as smart home, smart city, and industrial
Internet [16]. In [14], the development of edge intelligence
on the Internet of Vehicles and the typical use cases were
presented.

B. Hardware for the edge intelligence

Many edge hardware has been designed to contribute to the
development of edge intelligence. The Google Coral[3] is an
inference accelerator at the edge which contains an Edge TPU.
Edge TPU is a useful supplement to CPU, GPU, FPGA, and
other ASIC solutions that run AI at the edge. The Raspberry Pi
4 [9] is a tiny desktop computer based on ARM. Some simple
edge tasks can be deployed on the Raspberry Pi 4. But some
powerful AI algorithms are difficult to run because it does not
have a GPU to accelerate the algorithm. The NVIDIA Jetson
series are edge computing devices with GPUs, including Jetson
AGX, Jetson NX, Jetson TX2, Jetson Nano [7], etc.

C. Deep learning packages on the edge

The lightweight deep learning packages are used to speed
up the execution, such as TensorFlow, PyTorch, and Ten-
sorRT. TensorFlow [1] is developed by Google in 2016 and
becomes one of the most widely used deep learning frame-
works. PyTorch [2] is published by Facebook, which provides
tensor computation with strong GPU acceleration and Deep
Neural Networks built on a tape-based auto-grad system to
optimize the running time. Developed by NVIDIA company,
TensorRT [8] is designed to reduce the latency and increase
the throughput when executing the inference task on NVIDIA
GPU.

III. EXPERIMENTAL METHODS

In this section, we will introduce the experimental methods.
As shown in Figure 2, this paper designed four experiments
to explore the feasibility of the machine learning optimization
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Fig. 2. The design of the experiments.

techniques. In experiment 1, we compared the performance
of TensorFlow, PyTorch, and TensorRT running YOLOv3 on
Jetson Nano. In experiment 2, we analyzed PyTorch’s perfor-
mance because PyTorch exhibited an unusual performance in
experiment 1. Experiment 3 used the optimization techniques
to accelerate the running time of TensorRT to find the best
configuration for deploying YOLOv3 on Jetson Nano. In exper-
iment 4, we measured the power of TensorFlow, PyTorch, and
TensorRT. In addition, we measured the power consumption of
TensorRT when leveraging the 16-bit quantization optimization
techniques.

The structure of YOLOv3 is shown in Figure 3, which is a
deep learning model consisting of Convolutional Neural Net-
work(CNN) layers. The YOLO layer processes the bounding
box after the deep neural network. The Post-Processing layer
includes filtering(remove the invalid bounding box) and non
maximal suppression(NMS).
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Fig. 3. The structure of YOLOv3(take 416*416 input as an example).

A. Experiment 1: Framework comparison

We compared the latency and memory usage of YOLOv3
under different computational complexity.

For TensorFlow, we selected seven different resolution,
320*320, 416*416, 480*480, 544*544, 608*608, 704*704 and
800*800, to measured the latency and memory usage. In the
latency side, we only measured the total end-to-end time
because TensorFlow only supports static graphs. In the memory
side, its because that TensorFlow will take up all available
memory that we can not accurately measure the memory used
by models. we only measured a suitable memory by limiting
TensorFlow memory to make sure all models used can run.

For PyTorch, we selected ten different resolution, 320*320,
416*416, 448*448, 480*480, 512*512, 544*544, 576*576,
608*608, 640*640 and 672*672, to measured the latency and
memory usage. The number of the resolution is larger than

TensorFlow because we found some non-linear results between
480*480 to 608*608 resolution. The maximum resolution is
672*672 since Jetson Nano cannot run the YOLOv3 when
the resolution is bigger than 672*672. In terms of latency, we
measured the model forward time(The running time before the
YOLO layer, including the YOLO layer) and post-processing
time to analyze the performance bottlenecks.

For TensorRT, the resolution is the same as TensorFlow. We
also measured the model forward time and post-processing
time. However, unlike PyTorch, the model forward time of
TensorRT does not include the YOLO layer because the
TensorRT model does not support YOLO layer conversion.
The YOLO layer is included in the post-processing process
and implemented using NumPy.

B. Experiment 2: PyTorch performance

In experiment 1, we found that PyTorch has some unusual
features. First, the forward time is not directly related to the
computational complexity of the model and the post-processing
time is much longer than the forward time. Second, the end-
to-end time has some noticeable nonlinear changes as the
computational complexity increase.

We measured the different operations of the post-processing
part to find the most time-consuming process. We found
that the time is mainly consumed by the filtering(Filter
out untargeted boxes based on a threshold) consumption of
torch.where(). Further, we want to determine whether
we can use numpy.where() to optimize this operation.
Experiments show that numpy.where() is much faster than
torch.where(). But to use numpy.where() to process
data, we need first to convert the GPU data in PyTorch into
CPU data. This conversion time is almost equivalent to the
time consumed by torch.where().

We guess that Jetson Nano’s CPU’s performance may sig-
nificantly impact the end-to-end time. To verify this conjecture,
we ran the same program on a PC in the same software
environment and compared the ratio of model forward time
and post-processing time on Jetson Nano and PC to analyze
the impact of CPU performance on latency.

C. Experiment 3: TensorRT optimization

In experiment 1, we found that the performance of TensorRT
is the best. In this experiment, we leverage three methods
to optimize the inference speed of TensorRT to get the best
deployment strategy of YOLOv3 on Jetson Nano.

The first method is the 16-bit quantization. TensorRT sup-
ports an engine that generates 16-bit quantization. To measure
the performance after 16-bit quantization, we used the Vis-
Drone dataset [17] to compare the latency and accuracy of the
16-bit quantization model and the original model.

The second method is to find the most suitable input
size according to the picture’s ratio to reduce computational
complexity. In practical applications, the pictures taken by the
camera are mostly 4:3 or 16:9 ratio. Taking a 4:3 image as
an example, if the input resolution of YOLOv3 is 416*416,
the picture will be scaled in the pre-processing process. The
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actual picture’s sufficient resolution is 416*312, and the other
parts will be filled with monochrome blocks to 416*416,
as shown in Figure 4(a). However, the above method will
waste some computing power. If we zoom to 416*320 with
the resolution closest to 4:3(The minimum input resolution
of YOLOv3 is a multiple of 32), the sufficient resolution of
the picture is still 416*312, which will reduce computational
complexity without the loss of image information, as shown in
the Figure 4(b). In the same way, the 16:9 image zoomed in
the ratio closest to 16:9 will also reduce a lot of computational
complexity. However, scaling the 4:3 picture to 16:9 will lose
some image information. By scaling the 4:3 picture to 16:9,
the picture’s sufficient resolution is 312*234, which results
in the loss of some image information, as shown in Figure
4(c). In the experiment, we used the VisDrone dataset to
measure the latency and accuracy of the two scaling methods to
verify whether the end-to-end time can be accelerated without
affecting the accuracy.

Finally, we tested the parallel performance of the optimized
model on Jetson Nano, divided into two parts: the maximum
number and the average throughput of models in parallel.
To illustrate, if two models are running simultaneously, the
average throughput is twice the runtime throughput of a model.

D. Experiment 4: Power measurement

This experiment is designed to measure the power con-
sumption of different frameworks and optimization techniques
when running YOLOv3 on Jetson Nano. The experiment
includes two aspects. First, We measured the average power of
three frameworks running YOLOv3 with different resolutions.
Second, We obtain power fluctuations by using high-frequency
sampling. We sampled the power consumption of running the
YOLOv3 for 100 times on Jetson Nano.

IV. OBSERVATIONS

Section III introduced the methods and configuration of the
four experiments. In this section, we will show our experimen-
tal results and observations.

The relationshiop of end-to-end time and memory usage
of Jetson Nano and Jetson Xavier NX with computational
complexity are demonstrated on Figure 5(a) and Figure 5(b).
We first analyze the results of Jetson Nano and the analysis of
Jetson Xavier NX will be written in subsection D.

We can find that the end-to-end time of TensorRT is shorter
than that of TensorFlow and PyTorch. The relationships of
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running time and the computational complexity for Tensor-
Flow and TensorRT are linear. The function relationships
are described in the formula (1) and (3), respectively. The
relationship of PyTorch conforms to the formula (2).

T = 10.19C + 411.64 (1)

T =

{
14.66C + 230.89, 38.97 ≤ C ≤ 87.68
7.70C + 430.06, 99.76 ≤ C ≤ 126.26

10.72C − 116.07, 140.69 ≤ C ≤ 171.86
(2)

T = 5.32C + 37.62 (3)
In formulas (1), (2) and (3), T is time which is represented

by ms, and C is computational complexity which is repre-
sented by Billion floating-point operations (BFLOPs).

With the increase of the computational complexity, the
memory usage of TensorRT is stable without increasing. The
memory footprint of TensorRT is about 1378MB, respectively.
PyTorch’s memory will increase linearly with the increase of
the computational complexity, which conforms to the formula
(4). In formula (4), M is memory, represented by MB. In
our experiment, 2.5GB available memory can make sure all
TensorFlow models of different resolution to run.

M = 14.36C + 1393.52 (4)
Table I shows the detailed model forward time and post-

processing time of PyTorch because the unusual features that
the post-processing time is much more than model forward
time.

The observations are summarized as follows:
Observation 1: With the increase of the model complexity,

the end-to-end time of TensorFlow and TensorRT conforms to



TABLE I
PYTORCH LATENCY PERFORMANCE

Resolution BFLOPs
Model

forward
time(ms)

Post-
processing
time(ms)

320*320 38.97 62.44 727.77
416*416 65.86 62.82 1164.61
448*448 76.38 59.83 1282.47
480*480 87.68 61.04 1444.48
512*512 99.76 60.95 1154.6
544*544 112.62 60.95 1173.2
576*576 126.26 61.48 1356.56
608*608 140.69 59.38 1332.79
640*640 155.89 59.67 1496.43
672*672 171.86 74.68 1651.64

a linear relationship. The end-to-end time of PyTorch has no
absolute relationship with the model complexity and, the peak
end-to-end time occurs at 87.68BFLOPs.

Observation 2: With the increase of the model complexity,
the memory usage of TensorRT is stable in an interval while
PyTorch’s memory usage conforms to a linear relationship.

Observation 3: As shown in Table I, unlike common
sense, the PyTorch’s end-to-end time is mainly spent on post-
processing rather than model forward, and the model forward
time does not increase with the increase of the model complex-
ity.
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A. The experimental results of PyTorch

According to experiment 1, we found some unusual features
of PyTorch. Experiment 2 is designed to further understand
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the performance of PyTorch. Figure 6 shows the relationship
between the time consumed by each operation of PyTorch and
model complexity. It shows that the end-to-end time is mainly
consumed in the post-processing stage, and the post-processing
time is primarily consumed in filtering. The time for converting
GPU data to CPU data is the same as the filtering time. The
time of model forward is much less the time of post-processing
and doesn’t change with the increase of FLOPs. Figure 7 shows
the proportion of each operation time when the resolution is
480*480 in detail.

Because the model forward part, mainly executed on the
GPU, has a short running time, we want to explore whether the
performance of the CPU affects the end-to-end time. We used
another PC to do the same experiment in the same software
environment. The CPU of the PC is Inter(R) Core(TM) i5
9400F, and the GPU is NVIDIA GeForce GTX 1660 SUPER.
The Figure 8 shows the ratio of post-processing time to model
forward time on Jetson Nano and PC. It is found that the
value on PC is much smaller than that on Jetson Nano, which
shows that the performance bottleneck of using the PyTorch
framework to run YOLOv3 on Jetson Nano is mainly on the
CPU. If the CPU performance is improved, the end to end
speed will also be significantly improved.

The observations are summarized as follows:
Observation 4: PyTorch’s end-to-end time is mainly spent

on post-processing, and the post-processing time is mainly
spent on filtering. In the process of filtering with NumPy, the
time for converting GPU data to CPU data is almost the same
as the time of torch.where(). Taking 480*480 resolution
input as an example, the post-processing time accounts for
95.95% of the end-to-end time, the filtering time accounts for
99.35% of the post-processing time, and the time from GPU
data to CPU data accounts for 98.67% of the post-processing
time.

Observation 5: Improving the performance of CPU is ben-
eficial in improving the deployment performance of PyTorch.

B. The optimization of TensorRT

We used the VisDrone dataset to compare the optimization
methods of TensorRT introduced in section III. The pictures
in the VisDrone dataset have two styles of 4:3 and 16:9. As
shown in Table II, compared with the resolution of 416*416,



the accuracy of 416*320, which is the closest to 4:3, is slightly
improved, which can be regarded as unchanged. When testing
at the resolution of 416*256, which is the closest to 16:9,
the accuracy is reduced by less than 1%, mainly because it
will lose some image information when the 4:3 style image is
scaled to 416*256. The fifth row indicates the accuracy of 16-
bit quantization at 416*256 resolution, which can be regarded
as unchanged compared to the 32-bit result.

TABLE II
COMPARISON OF ACCURACY UNDER DIFFERENT RESOLUTIONS AND

QUANTIZATION BITS

Resolution Bits AP(%) AP50(%) AP75(%)

416*416 32 8 18.39 6.02
416*320 32 8.05 18.49 5.99
416*256 32 7.65 17.59 5.63
416*256 16 7.66 17.61 5.65
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Fig. 9. The end-to-end time and memory usage of TensorRT using different
deployment methods with different input resolutions on Jetson Nano.

Figure 9(a) shows that the end-to-end time using TensorRT
with different quantization conditions and different resolution
ratios. The maximum resolution represents the max of reso-
lution. For example, the maximum resolution of 416*416 and
416*320 are both 416.

Figure 9(b) shows the memory usage of the TensorRT model
using different quantization accuracy and input resolution
ratios to deploy YOLOv3.

In parallel experiments, the maximum running numbers
of the TensorRT 16-bit model with 16:9 input resolution in
parallel are three on Jetson Nano. Figure 10 shows the parallel
performance.

The observations are summarized as follows:
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Observation 6: Using the 16-bit quantization model and
scaling the input resolution of YOLOv3 will reduce memory
usage and improve running speed without loss of accuracy.
Compared with the original model, using 16-bit quantization
and scaling input resolution to approach 16:9 can increase
the speed from 3.9FPS to 10.5FPS and reduce memory usage
from 1027MB to 779MB without loss of accuracy when the
maximum input resolution is 320.

Observation 7: The latency of YOLOv3 (the unit is FPS)
will improve when the model is running in parallel. Compared
with the two models in parallel, the throughput of the three
models in parallel has a higher increase when the maximum
resolution is less than 480. As the resolution continues to
increase, the performance of the multi-model parallel is no
longer improved.
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C. Power measurement

We measured the average power of three frameworks. Figure
11 shows the change in power of TensorFlow, PyTorch, Ten-
sorRT 32-bit, and TensorRT 16-bit with the model complexity.

We chose the 608*608 input resolution to show the results
of power fluctuation as shown in Figure 12.

The observations are summarized as follows:
Observation 8: When the resolution is less than 480*480,

PyTorch is energy-saving. Meanwhile, when the resolution is
greater than 480*480, TensorRT with the 16-bit quantization
techniques is most energy-efficiency.



Observation 9: The power fluctuation of TensorRT is
greater than that of TensorFlow and PyTorch.
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Fig. 12. The power of TensorFlow, PyTorch, TensorRT 32-bit, and TensorRT
16-bit model in the 608*608 input resolution.

D. Generalization

This subsection explores whether the rules on Jetson Nano
are suitable for other GPU-based edge devices. We compared
the performance of TensorFlow, PyTorch and TensorRT on
NVIDIA Jetson Xavier NX which is designed for high-
performance compute and AI in embedded and edge systems.
The theoretical peak computing power of Jetson Xavier NX
is 21 TOPS, which is equipped with 6-core NVIDIA Carmel
ARM CPU, 384-core NVIDIA GPU, and two NVIDIA Deep
Learning Accelerators engines.

Figure 5(a) compares the end-to-end time on Jetson Nano
and Jetson Xavier NX. The experimental results on Jetson
Xavier NX are similar to Jetson Nano. The end-to-end time
of TensorFlow and TensorRT is proportional to the model
complexity on Jetson Xavier NX. TensorRT presents the short-
est running time among the three packages. There is still a
trough in the runtime of PyTorch on Jetson Xavier NX, but
the model complexity at this time is 206.17BFLOPs instead of
the 99.76BFLOPs on Jetson Nano.

Figure 5(b) compares the memory usage on Jetson Nano
and Jetson Xavier NX. The experimental results on Jetson
Xavier NX are also similar to Jetson Nano. The memory
usage of PyTorch is proportional to the model complexity,
while TensorRT’s memory usage is relatively stable, remaining
between 800MB and 1600MB.

In addition, we also explored the performance of optimiza-
tion techniques and the power usage on Jetson Xavier NX.
Using the quantization techniques and scaling the image to
suitable resolution will improve the performance on the latency
and memory usage. When running YOLOv3 on Jetson Xavier
NX, the peak performance will achieve 30.3FPS. TensorRT’s
power consumption is minimal between the three packages,

while the power fluctuation is the biggest. The maximal aver-
age power consumption of TensorRT, TensorFlow, and PyTorch
are 15.73W, 19.06W, and 20.07W, respectively.

In summary, by comparing the running time, memory usage,
power consumption, and optimization techniques, we found
that most of the rules on Jetson Nano are also suitable for
other GPU-based edges, Jetson Xavier NX, which validates
that the generalization of these observations.

V. INSIGHTS AND SUGGESTIONS

This section will introduce the insights and provide sugges-
tions to deploy YOLOv3 on Jetson Nano.

A. Insights

The insights are summarized as follows:
Insight 1: The formula of end-to-end time with the model

computational complexity of TensorFlow, PyTorch, and Ten-
sorRT is in the form of T = aC+b. a represents the increasing
trend of time as computational complexity increases, and b
represents the initial time consumption. Formulas 1 to 3 show
that TensorRT has the smallest initial time consumption and
time growth trend.

Insight 2: The initial memory usage of PyTorch and Ten-
sorRT are 1393MB and 1378MB, respectively. But unlike the
memory usage of TensorRT is stable, the PyTorch’s memory
usage increases with the increase of the model computational
complexity. The relationship is show in formula 4.

Insight 3: PyTorch’s performance on edge devices is largely
affected by the CPU. If the CPU is improved, the performance
of PyTorch when running YOLOv3 will be improved.

Insight 4: The running time will be improved when the
model is in parallel because the model forward needs to use
GPU, and the post-processing just uses CPU. Parallelization
can make full use of heterogeneous resources where a model
uses GPU and other models use CPU. With the increases
in the model computational complexity, the performance of
parallelization decreases because the forward time increases
more than the post-processing time. The latency can’t be
improved due to the insufficient computing resources.

Insight 5: TensorRT’s power fluctuation is greater than
TensorFlow and PyTorch because TensorRT uses NumPy to
implement the post-processing part, which saves the power
consumption of GPU. The TensorRT with the 16-bit quanti-
zation model has lower average power while the peak power
is the same as TensorFlow model and PyTorch model.

B. Suggestions

Suggestions when using TensorFlow:
1) Paying attention to limit the available memory of models

because TensorFlow will take up all available memory
of system if the available memory is not set.

Suggestions when using PyTorch:
1) Avoiding using the input resolution from 416*416 to

480*480, because the speed in this range is even lower
than the speed of higher input resolution.



2) Preparing enough swap space when the resolution is
bigger than 416*416.

Suggestions when using TensorRT:
1) TensorRT is recommended for deployment because the

performance is better than TensorFlow and PyTorch.
2) Deploying the model with the 16-bit quantization tech-

niques because it will improve running time and re-
duce memory usage without reducing accuracy. Taking
416*416 (resolution) as an example, the 16-bit quantiza-
tion model has 40% less end-to-end time and 39% less
memory than the original model.

3) Using the resolution closest to the picture as the in-
put will speed up by reducing computational complex-
ity without affecting accuracy. The end-to-end time of
416*256 (resolution) is 41% of 416*416 (resolution)
input when using the 16:9 picture.

Suggestions for power consumption:
1) Compared with the TensorRT 32-bit model, using Ten-

sorRT 16-bit quantization model to deploy YOLOv3 will
save more energy and get faster running speed.

2) If only energy consumption is considered, using the
PyTorch model when the resolution is less than 480*480
and using TensorRT 16-bit quantization model when the
resolution is greater than 480*480.

VI. CONCLUSION

In this paper, we analyze the feasibility of the edge AI
optimization techniques on the low-cost, low-power edge. Four
experiments were designed to explore whether NVIDIA Jetson
Nano could meet the real-time requirement when running
YOLOv3 on Jetson Nano. Experiment 1 compared the per-
formance of three deep learning frameworks, TensorFlow, Py-
Torch, and TensorRT, running YOLOv3 on Jetson Nano. Since
the inference time of PyTorch is much faster than TensorFlow
and TensorRT except for the post-processing, experiment 2
analyzed the performance bottleneck of post-processing for
PyTorch. Experiment 3 leveraged optimization techniques to
squeeze the extreme performance of TensorRT as TensorRT
performs better than others. We compared the power of running
YOLOv3 in experiment 4 and found that TensorRT with the
16-bit model has the lowest power consumption with the fastest
running speed and the least memory usage.

After these experiments, we obtained extreme performance
and provided suggestions when using the edge AI-oriented
frameworks and optimization techniques. The fastest inference
time of YOLOv3 on Jetson Nano is 13.1FPS with the TensorRT
framework and the 16-bit model quantization technology. The
resolution is 320*192, and the picture ratio is 16:9. In addition,
we compared the performance of Jetson Nano and Jetson
Xavier NX through the same experiments and found that most
of the rules on GPU-based edges are similar. By leveraging
the optimization techniques on Xavier NX, the running speed
increases from 12.6FPS to 30.3FPS.

In conclusion, we found that the low-cost, GPU-based edge
devices could meet the requirements of the mainstream AI

applications with the help of optimization technology. In the
future, we will study more optimization techniques and com-
pare their effectiveness on a variety of edges to provide more
systematic deployment recommendations for the community.
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